Electron–electron interaction in multiwall carbon nanotubes
نویسندگان
چکیده
منابع مشابه
Multichannel ballistic transport in multiwall carbon nanotubes.
The electric transport properties of an individual vertical multiwall carbon nanotube (MWCNT) were studied in situ at room temperature in a scanning electron microscope chamber. It was found that the single MWCNT has a large current-carrying capacity, and the maximum current can reach 7.27 mA. At the same time, a very low resistance of about 34.4 ohms and a high conductance of about (460-490)G0...
متن کاملMultiwall carbon nanotubes as quantum dots.
We have measured the differential conductance of individual multiwall carbon nanotubes. Coulomb blockade and energy level quantization are observed. The electron levels are nearly fourfold degenerate (including spin) and their evolution in magnetic field (Zeeman splitting) agrees with a g factor of 2. In zero magnetic field the sequential filling of states evolves with spin S according to S = 0...
متن کاملInverse Photoemission Spectroscopy of Multiwall Carbon Nanotubes
Multiwall Carbon Nanotubes (MWCNTs) were synthesized by Chemical Vapor Deposition (CVD). Two different procedures were used to grow MWCNT films roughly, aligned in the direction normal to the SiO2/Si(111) substrate. Inverse Photoemission Spectroscopy measurements, on these samples, show the existence of resonances which could be traced back to a flat graphene sheet. The unoccupied valence band ...
متن کاملEvaluating the characteristics of multiwall carbon nanotubes
During the past 20 years, multiwall carbon nanotubes (MWCNTs) have become an important industrial material. Hundreds of tons are produced each year. This review is a survey of the scientific literature, motivated by industrial requirements and guidelines for environment, health and safety compliance. Sampling, size, area, density, color, crystallinity, as well as purity compared to properties o...
متن کاملSuppression of tunneling into multiwall carbon nanotubes.
We have studied tunneling of electrons into multiwall carbon nanotubes (NTs) in NT-gold and NT-NT junctions, the latter created by atomic force microscope manipulation. The tunneling conductance goes to zero as the energy (temperature and bias) is reduced, and the functional form is consistent with a power law. The exponents depend upon sample geometry. The relationship between these results an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Solid State Communications
سال: 2002
ISSN: 0038-1098
DOI: 10.1016/s0038-1098(01)00448-3